数控电脑系统维修,数控机床系统维修

1 数控机床故障的分类

常见故障按产生原因分为机械故障和电气故障两类。所以,维修中首先要判断是机械故障还是电气故障,先检查电气系统看程序能否正常运行,功能键是否正常,有无报警现象等,再检查是否有缺相、过流、欠压或运动异常等现象。根据上述情况,则可初步判断故障原因在机械方面还是在电气方面。

2 典型故障的诊断与排除方法

2.1 常规检查法 ①报警处理:数控系统发生故障时,一般在操作面板上给出故障信号和相应的信息。通常系统的操作手册或调整手册中都有详细的报警内容和处理方法。同时可以利用操作面板或编程器根据电路图和PLC 程序,查出相应的信号状态,按逻辑关系找出故障点进行处理。②无报警或无法报警的故障处理:当系统无法运行,停机或系统没有报警但工作不正常时,需要根据故障发生前后的系统状态信息,运用已掌握的理论基础,进行分析,做出正确的判断。这种利用可编程控制器进行PLC中断状态分析,其中断原因以中断堆栈的方式记忆。

例如:一台SCHIESS VMG6 7轴五连动数控机床,采用西门子840D系统其可编程控制器S7300在运行中产生中断故障,利用系统诊断中断堆栈的方法可以十分迅速的找到故障原因,通过SIMATIC Manager 访问这一功能,选择菜单功能PLC->Diagnostic/setting->Module Information->Diagnostic Buffer,可打开诊断缓冲器,诊断缓冲器中按先后顺序存储着所有可用于系统诊断的事件。选中了一个事件后,在“Dtails on Event"信息框中可以看到关于该事件的详细说明:事件(ID)代号和事件号、块类型和号码,根据事件,如导致该事件的指令的相对STL行地址。单击〖Help on Event〗按钮,可打开事件帮助信息窗口。单击〖Open Block〗按钮,可在线打开CPU中出现中断的块,如利用这种方法在实际维修工作中是十分迅速有效的。维修人员应当充分熟悉系统的自诊断功能的一些特殊处理方法。这样就会少走弯路,较快排除故障。

2.2 初始化法 一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次清除故障;若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除。

例如:一台德国PFH100KW-6米数控龙门铣镗床采用西门子840C数控系统,由于系统工作存贮区混乱,开关后只定在一个初始化界面,系统根本无法进入,一般性复位无效,必须对系统进行初始化清除,就采用了初始化复位法,进入〖start up〗菜单->利用〖general reset mode information on startup〗->选择〖end gen reset mode〗进行这种特殊的复位法之后,系统才能重启进行正常操作,故障解除。

2.3 参数修正法 在数控机床维修中,有时要利用某些参数来调整机床,有些参数要根据机床的运行状态进行必要的修正,这种方法与机械维修相配合是十分有效的。例如:一台法国Forestφ250数控落地镗采用NUM1060系统爬行严重,虽进行了X轴导轨的大修但此方向立柱的运行仍无法满足加工要求,原因是前导轨已经严重研伤,在机械调节能力有限的基础上试着进行参数更改,将P21 Servo-system loop gain coefficient伺服系统的位置环增益系数逐渐修调,NUM机床参数的设置步骤及操作方法介绍如下:①上电后按软键Fll-SELECT THE UTILITY②选择0项ACCESS TO UTILITY PROGRAMMES③选择第5项SETUP DATA④这时出现画面WARNING MACHINE CONTROL WILL BE STOPPED WHENCHANGING PARAMETES OK?(Y/N),键人Y字母⑤出现画面MACHINE SETUP DATA 0 DISPLAY 1 CHANGE……,如果更改请键入1⑥出现PARAMETER?如果更改参数P21则键入P21⑦出现该参数后将光标移到字按#键入参数值回车即可⑧按键CTRL+X Off系统复位退出参数设定即可。经多次调试P21数值由950最终降为700后机床爬行故障得到好转,保证了生产的进行。所以维修人员要多查资料多了解机床各种参数的意义及参数更改的方法。这样就可以在机械调节能力一定的基础上通过修改NC数据使机床的性能得到更好更大的发挥,提高它的加工精度。

3 数控机床电气、液压和冷却润滑系统的保养

3.1 电气系统的保养

3.1.1 清除电气柜内的积灰,保持电路板、电气元件表面干净。由于环境温度过高,数控柜内一般都要加装空调装置。安装空调后,数控系统的可靠性有明显的提高。

3.1.2 机床周围电器 检查机床各部件之间连接导线、电缆不得被腐蚀与破损,发现隐患后及时处理,以防止短路、断路。紧固好接线端子和电器元件上的压线螺钉,使接线头牢固可靠。

3.1.3 机床电源 检查数控系统供电是否正常,电压波动是否在允许范围之内,整个数控电气系统接地是否良好可靠。接地可靠是系统防止干扰、工作可靠的保证。

例如:一台美国AB的10×40米数控车铣床在调试过程中发现,机床通讯经常突然中断很异常,通过检查发现电控框屏蔽层接地不好,使程序信号受干扰引起失真,是导致上述问题的原因,将电缆屏蔽层、机床配电柜元器件良好接地后故障排除。

3.2 液压系统的保养 要定期对油箱内的油液进行更换,且有时机床油号的选择也要由工作现场的环境温度,油路系统不同而定。定期检查更换密封件,清洗油箱和管路,防止液压系统泄漏。检查系统的噪声、振动、压力、温度等是否正常,将故障排除在萌芽状态。

3.3 冷却润滑系统保养 检查导轨润滑油箱的油量,润滑油泵是否能定时启动、停止。定期检查油泵、清洗过滤器、油箱、更换润滑油。如切削液太脏,应清洗切削液箱、更换切削液。在使用过程中,因此,要求除了掌握数控机床的性能及精心操作外,还要注意消除各种不利的影响因素。

应该强调的是,虽然数控机床的系统种类繁多,但是各类数控机床的保养方法基本相同。只要操作者与维修人员做到认真操作,精心维护,就可以及时发现和消除隐患,减少维修费用,从而保证了数控机床更长时间安全可靠的运行,切实贯彻了设备管理以防为主的主导思想,从而有效的保证和提高了企业的经济效益。

延长元器件的寿命和零部件的磨损周期,预防各种故障,提高数控机床的平均无故障工作时间和使用寿命。 1、数控机床的使用环境:对于数控机床最好使其置于有恒温的环境和远离震动较大的设备(如冲床)和有电磁干扰的设备;

2、电源要求;

3、数控机床应有操作规程:进行定期的维护、保养,出现故障注意记录保护现场等;

4、数控机床不宜长期封存,长期会导致储存系统故障,数据的丢失;

5、注意培训和配备操作人员、维修人员及编程人员 数控系统的维护

1、严格遵守操作规程和日常维护制度

2、防止灰尘进入数控装置内:漂浮的灰尘和金属粉末容易引起元器件间绝缘电阻下降,从而出现故障甚至损坏元器件。

3、定时清扫数控柜的散热通风系统

4、经常监视数控系统的电网电压:电网电压范围在额定值的85%~110%。

5、定期更换存储器用电池

6、数控系统长期不用时的维护:经常给数控系统通电或使数控机床运行温机程序。

7、备用电路板的维护机械部件的维护

机械部件的维护

1、刀库及换刀机械手的维护

1)用手动方式往刀库上装刀时,要保证装到位,检查刀座上的锁紧是否可靠;

2)严禁把超重、超长的刀具装入刀库,防止机械手换刀时掉刀或刀具与工件、夹具等发生碰撞;

3)采用顺序选刀方式须注意刀具放置在刀库上的顺序是否正确。其他选刀方式也要注意所换刀具号是否与所需刀具一致,防止换错刀具导致事故发生;

4)注意保持刀具刀柄和刀套的清洁;

5)经常检查刀库的回零位置是否正确,检查机床主轴回换刀点位置是否到位,并及时调整,否则不能完成换刀动作;

6)开机时,应先使刀库和机械手空运行,检查各部分工作是否正常,特别是各行程开关和电磁阀能否正常动作。

2、滚珠丝杠副的维护

1)定期检查、调整丝杠螺母副的轴向间隙,保证反向传动精度和轴向刚度;

2)定期检查丝杠支撑与床身的连接是否松动以及支撑轴承是否损坏。如有以上问题要及时紧固松动部位,更换支撑轴承;

3)采用润滑脂的滚珠丝杠,每半年清洗一次丝杠上的旧油脂,更换新油脂。用润滑油润滑的滚珠丝杠,每天机床工作前加油一次;

4)注意避免硬质灰尘或切屑进入丝杠防护罩和工作过程中碰击防护罩,防护装置一有损坏要及时更换。

3、主传动链的维护

1)定期调整主轴驱动带的松紧程度;

2)防止各种杂质进入油箱。每年更换一次润滑油;

3)保持主轴与刀柄连接部位的清洁。需及时调整液压缸和活塞的位移量;

4)要及时调整配重。

4、液压系统维护

1)定期过滤或更换油液;

2)控制液压系统中油液的温度;

3)防止液压系统泄漏;

4)定期检查清洗油箱和管路;

5)执行日常点检查制度。

5、气动系统维护

1)清除压缩空气的杂质和水分;

2)检查系统中油雾器的供油量;

3)保持系统的密封性;

4)注意调节工作压力;

5)清洗或更换气动元件、滤芯; 在数控机床中,大部分的故障都有资料可查,但也有一些故障,提供的报警信息较含糊甚至根本无报警,或者出现的周期较长,无规律,不定期,给查找分析带来了很多困难。对这类机床故障,需要对具体情况分析,进行耐心的查找,而且检查时特别需要机械、电气、液压等方面的综合知识,不然就很难快速、正确地找到故障的真正原因。

加工精度异常故障:系统参数发生变化或改动、机械故障、机床电气参数未优化电机运行异常、机床位置环异常或控制逻辑不妥,是生产中数控机床加工精度异常故障的常见原因,找出相关故障点并进行处理,机床均可恢复正常。生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。

导致此类故障的原因主要有5个方面:

1、机床进给单位被改动或变化;

2、机床各轴的零点偏置(NULLOFFSET)异常;

3、轴向的反向间隙(BACKLASH)异常;

4、电机运行状态异常,即电气及控制部分故障;

5、机械故障,如丝杆、轴承、轴联器等部件。

此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。

机械故障导致的加工精度异常,主要应对以下几方面逐一进行检查。

1、检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。

2、在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。 1、初始化复位法:一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。

2、参数更改,程序更正法:系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。

3、调节,最佳化调整法:调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某厂维修中,其系统显示器画面混乱,经调节后正常。如在某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。

最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。

4、备件替换法:用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是最常用的排故办法。

5、改善电源质量法:一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。

6、维修信息跟踪法:一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。 数控机床电气故障诊断有故障检测、故障判断及隔离和故障定位三个阶段。第一阶段的故障检测就是对数控机床进行测试,判断是否存在故障;第二阶段是判定故障性质,并分离出故障的部件或模块;第三阶段是将故障定位到可以更换的模块或印制线路板,以缩短修理时间。为了及时发现系统出现的故障,快速确定故障所在部位并能及时排除,要求故障诊断应尽可能少且简便,故障诊断所需的时间应尽可能短。为此,可以采用以下的诊断方法:

1、直观法

利用感觉器官,注意发生故障时的各种现象,如故障时有无火花、亮光产生,有无异常响声、何处异常发热及有无焦煳味等。仔细观察可能发生故障的每块印制线路板的表面状况,有无烧毁和损伤痕迹,以进一步缩小检查范围,这是一种最基本、最常用的方法。

2、CNC 系统的自诊断功能

依靠CNC系统快速处理数据的能力,对出错部位进行多路、快速的信号采集和处理,然后由诊断程序进行逻辑分析判断,以确定系统是否存在故障,及时对故障进行定位。现代CNC系统自诊断功能可以分为以下两类:

1)开机自诊断开机自诊断是指从每次通电开始至进入正常的运行准备状态为止,系统内部的诊断程序自动执行对CPU、存储器、总线、I/O单元等模块、印制线路板、CRT 单元、光电阅读机及软盘驱动器等设备运行前的功能测试,确认系统的主要硬件是否可以正常工作。

2)故障信息提示当机床运行中发生故障时,在CRT 显示器上会显示编号和内容。根据提示,查阅有关维修手册,确认引起故障的原因及排除方法。一般来说,数控机床诊断功能提示的故障信息越丰富,越能给故障诊断带来方便。但要注意的是,有些故障根据故障内容提示和查阅手册可直接确认故障原因;而有些故障的真正原因与故障内容提示不相符,或一个故障显示有多个故障原因,这就要求维修人员必须找出它们之间的内在联系,间接地确认故障原因。

3、数据和状态检查

CNC系统的自诊断不但能在CRT 显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的数据和状态检查有参数检查和接口检查两种。

1)参数检查数控机床的机床数据是经过一系列试验和调整而获得的重要参数,是机床正常运行的保证。这些数据包括增益、加速度、轮廓监控允差、反向间隙补偿值和丝杠螺距补偿值等。当受到外部干扰时,会使数据丢失或发生混乱,机床不能正常工作。

2)接口检查CNC系统与机床之间的输入/输出接口信号包括CNC 系统与PLC、PLC 与机床之间接口输入/输出信号。数控系统的输入/输出接口诊断能将所有开关量信号的状态显示在CRT 显示器上,用“1”或“0”表示信号的有无,利用状态显示可以检查CNC系统是否已将信号输出到机床侧,机床侧的开关量等信号是否已输入到CNC 系统,从而可将故障定位在机床侧或是在CNC 系统。

4、报警指示灯显示故障

现代数控机床的CNC 系统内部,除了上述的自诊断功能和状态显示等“软件”报警外,还有许多“硬件”报警指示灯,它们分布在电源、伺服驱动和输入/输出等装置上,根据这些报警灯的指示可判断故障的原因。

5、备板置换法

利用备用的电路板来替换有故障疑点的模板,是一种快速而简便的判断故障原因的方法,常用于CNC 系统的功能模块,如CRT 模块、存储器模块等。需要注意的是,备板置换前,应检查有关电路,以免由于短路而造成好板损坏,同时,还应检查试验板上的选择开关和跨接线是否与原模板一致,有些模板还要注意模板上电位器的调整。置换存储器板后,应根据系统的要求,对存储器进行初始化操作,否则系统仍不能正常工作。

6、交换法

在数控机床中,常有功能相同的模块或单元,将相同模块或单元互相交换,观察故障转移的情况,就能快速确定故障的部位。这种方法常用于伺服进给驱动装置的故障检查,也可用于CNC 系统内相同模块的互换。

7、敲击法

CNC 系统由各种电路板组成,每块电路板上会有很多焊点,任何虚焊或接触不良都可能出现故障。用绝缘物轻轻敲打有故障疑点的电路板、接插件或电器元件时,若故障出现,则故障很可能就在敲击的部位。

8、测量比较法

为检测方便,模块或单元上设有检测端子,利用万用表、示波器等仪器仪表,通过这些端子检测到的电平或波形,将正常值与故障时的值相比较,可以分析出故障的原因及故障的所在位置。由于数控机床具有综合性和复杂性的特点,引起故障的因素是多方面的。上述故障诊断方法有时要几种同时应用,对故障进行综合分析,快速诊断出故障的部位,从而排除故障。同时,有些故障现象是电气方面的,但引起的原因是机械方面的;反之,也可能故障现象是机械方面的,但引起的原因是电气方面的;或者二者兼而有之。因此,对它的故障诊断往往不能单纯地归因于电气方面或机械方面,而必须加以综合,全方位地进行考虑。 作为现代工业基石的机床产业,是工业经济发展过程中无论如何都不能绕过一个关键性问题,中国机床产业由于先天不足,一直在中高端机床项目发展上落于国外主流水准,正处于一个追赶的过程当中。

中国数控机床仍然较为落后。中国数控机床市场巨大,与国外产品相比,中国的差距主要是机床的高速高效化和精密化上,中国正处于工业化中期,即从解决短缺为主的开放逐步向建设经济强国转变,从脱贫向致富转变,煤炭、汽车、钢铁、房地产、建材、机械、电子、化工等一批以重工业为基础的高增长行业发展势头强劲,构成了对机床市场尤其是数控机床的巨大需求。

中国机床行业加速转型面临四大制约因素。中国的数控机床技术现在目前最多只能做到五轴联动,并且据有关人士说这个五轴还是作秀成份居多,五轴以上几乎就是全部进口,并且在多点联动的技术上也和国外技术水准存在非常大的差距。

国内市场国际化竞争加剧:由于中低档数控机床市场萎缩和生产能力过剩,加之国外产品低价涌入,市场竞争将进一步加剧。而高档产品由于长期以来一直依赖进口,国内产品更加面临着国际化竞争的严峻挑战。

以技术领先的策略正在向以客户为中心的策略转变:经济危机往往会催生大规模的产业升级和企业转型,机床工具行业实现制造业服务化,核心在于要以客户为中心,积极提供客户需要的个性化服务。因此,从简单的卖产品转向提供整体解决方案、从以技术为中心向以客户为中心转变成为当今的趋势。

中国的产品与中国市场需求反差较大,产品结构亟待快速调整:中国机床行业虽然保持多年持续快速发展,但是产业和产品结构不合理的现象依然存在,整个行业大而不强,高档产品还大量依赖进口。国产机床的国内市场占有率虽然已经有一定的提高,但是高档数控机床、核心功能部件在国内市场占有率还很低,全行业替代进口的潜力非常巨大。

企业技术创新模式有待完善:由于中国机床企业的地位、工业化水平和品牌影响力在逐步提升,要成为工业强国,其技术的获得再也不能依赖别人。过去,中国走了一条从模仿到引进的道路,从现在开始必须走自主创新的道路。企业技术遇到新的封锁,建立自主、新型、战略性的产学研创新模式是支撑产品结构调整技术来源的惟一途径。

中国数控机床行业将延续结构调整的势头,不断以新产品、新亮点占领更大市场。数控切割机床按切割方式可分为火焰切割和等离子切割两大类。随着下游行业需求的不断提高,对数控机床配件提出了更大的需求和更高的要求。

东北地区发展不快,其他地方的发展也比较缓慢。三是调结构促转型取得成效。专家认为面对金融危机,广大企业应不断调整结构、提高质量、增加品种及推动产业升级,再加上企业加强管理,降低费用,所以企业效益明显好转。数控切割机床装饰性发展趋势可见一斑,数控切割机床更多的是强调在机械性能、操作简便、价格经济、加工精度稳定等方面。在金属材料加工日益要求普及和批量化的今天,数控切割机床除了要满足上述功能性外,还要具有多切割方式的适用性。

国内数控机床企业为了提高自身实力,更快地拓展国际市场,将采取多种手段加快和国外企业的融合以提高产品质量、提高竞争力。在继续开拓美国、日本等国家市场的同时,在东南亚、中东、俄罗斯、欧洲、非洲等也全面开花。据了解,当前金属切割数控机床行业运行具有以下几个特点:一是外销企业困难较大。从规模以上企业来看,以内销为主的品牌企业发展势头较好。没有品牌的中小企业发展比较困难。二是各地区发展不够均衡,浙江、山东、河北、北京以及四川发展比较快,广东的民营企业发展也较快。

数控切割机床行业多数企业都是依靠降低产品售价来获得市场,造成的后果是产品价格低、附加值低、利润低,企业没有足够的资金持续发展。随着产业的发展和竞争的升级,提高产品技术含量,拥有自主的专利、设计,注重品牌的打造和营销才是企业长期发展的最佳选择。

中国机床行业在过去几年实现了持续超高速的发展,一直到2011年上半年,需求仍很旺盛,但是从下半年开始,需求增势明显趋缓,新增订单剧烈下滑,经济效益状况逐渐趋于严峻,利润率持续下降。

在“十二五”期间,国家实施积极的财政政策和稳健的货币政策,随着科技进步、产品升级以及国家重点工程、地方投资项目的不断推进,国民经济各行业对机床工具产品的需求水平将进一步提高,国防现代化对高水平机床的需求将更为迫切,市场需求将向更高层次发展,新一轮的市场竞争也将更加激烈。

由于行业景气度低迷,下游制造型企业对机床需求下降,所以我国机床行业一直处于低迷状态,升级转型成为行业近几年的关键词,经济型数控机床则成为振兴装备制造业的重点之一。

我国的铸造机床产业取得了一定的成绩,但是其发展仍然面临着许多制约性问题,技术创新一直是国内铸造机床行业的硬伤。与国外的铸造机床产业相比,我国的铸造机床产业在制造工艺水平上明显落后,这使得其在核心运行部件的技术水平和运行速度、产品精度保持性以及机床的可靠性上有着明显的不足。

我国铸造机床企业缺乏自主创新和基础理论研究的意识与能力,这就制约了我国铸造机床技术的发展,要改变这种现状,就要深入研究用户行业产品工艺的特点和要求,结合工艺特点开发出高水平加工设备,同时,还要注重基础理论工作的研究,这样才能让我国铸造机床产业在不久的将来有更好的发展。国家出台的一系列政策,大力建设新兴企业,高新技术企业,抓住了这一时机,企业内部出台了“调整与振兴”、“自主创新”等一系列政策,升级企业机床技术,严格保证产品质量,为加快铸造机床行业的发展提供了良好的环境跟市场。

机床工具行业作为国家基础性和战略性产业,在“十二五”规划中,已明确将自主创新战略作为最主要的一个组成部分,着重强调了要以技术创新工程来支撑和引领行业发展。我国机床工具行业的发展必须立足于自主创新,通过自主研发原始创新、引进技术消化吸收再创新、集成现有技术创新等方式,实现关键技术突破和产业升级。构建和完善以企业为主体、以市场为导向、产学研用相结合的技术创新体系;坚持加大研发费用投入;加强关键技术、共性技术的研究,力争在基础和共性技术攻关上有所突破,提高产品开发技术水平。

技术发展

高速、精密、复合、智能和绿色是数控机床技术发展的总趋势,近几年来,在实用化和产业化等方面取得可喜成绩。主要表现在:

1、机床复合技术进一步扩展随着数控机床技术进步,复合加工技术日趋成熟,包括铣-车复合、车铣复合、车-镗-钻-齿轮加工等复合,车磨复合,成形复合加工、特种复合加工等,复合加工的精度和效率大大提高。“一台机床就是一个加工厂”、“一次装卡,完全加工”等理念正在被更多人接受,复合加工机床发展正呈现多样化的态势。

2、数控机床的智能化技术有新的突破,在数控系统的性能上得到了较多体现。如:自动调整干涉防碰撞功能、断电后工件自动退出安全区断电保护功能、加工零件检测和自动补偿学习功能、高精度加工零件智能化参数选用功能、加工过程自动消除机床震动等功能进入了实用化阶段,智能化提升了机床的功能和品质。

3、机器人使柔性化组合效率更高机器人与主机的柔性化组合得到广泛应用,使得柔性线更加灵活、功能进一步扩展、柔性线进一步缩短、效率更高。机器人与加工中心、车铣复合机床、磨床、齿轮加工机床、工具磨床、电加工机床、锯床、冲压机床、激光加工机床、水切割机床等组成多种形式的柔性单元和柔性生产线已经开始应用。

4、精密加工技术有了新进展数控金切机床的加工精度已从原来的丝级(0.01mm)提升到微米级(0.001mm),有些品种已达到0.05μm左右。超精密数控机床的微细切削和磨削加工,精度可稳定达到0.05μm左右,形状精度可达0.01μm左右。采用光、电、化学等能源的特种加工精度可达到纳米级(0.001μm)。通过机床结构设计优化、机床零部件的超精加工和精密装配、采用高精度的全闭环控制及温度、振动等动态误差补偿技术,提高机床加工的几何精度,降低形位误差、表面粗糙度等,从而进入亚微米、纳米级超精加工时代。

5、功能部件性能不断提高功能部件不断向高速度、高精度、大功率和智能化方向发展,并取得成熟的应用。全数字交流伺服电机和驱动装置,高技术含量的电主轴、力矩电机、直线电机,高性能的直线滚动组件,高精度主轴单元等功能部件推广应用,极大的提高数控机床的技术水平。

发展问题

国内数控机床的需求日益增长,数控机床的发展推动了数控机床功能部件的创新升级。目前我国高档数控机床关键功能部件工业还不能满足国内需要,国内数控功能部件产业主要存在以下问题。

1、适应性和满足度远达不到市场需求

从当前我国数控机床的发展趋势来看,国产功能部件的适应性和满足度远远达不到市场的需求。主要表现在:

1)我国功能部件的产品水平和国外有一定差距。我国生产的功能部件多数以劳动密集型为主,技术含量低,难以适应国产数控机床的发展速度和技术要求,特别是高档数控机床。

2)我国功能部件开发能力较弱,新产品开发速度慢,多数功能部件需要与国外合作开发、合作生产、合资经营,甚至只能组装。虽然这两年形势有显著变化,但高技术、最新型的功能部件,我国尚在研制过程中,市场占有率前景依然不容乐观。

2、我国数控功能部件生产企业的规模小

据统计我国固定资产达到1000万元以上的功能部件生产企业有70多家,占全部生产企业的10%以下。我国的功能部件生产企业的“出身”有4种:一是从研究院所、大专院校以技术支撑发展而来的企业,可称为“院所型”。这些企业的特点是:有一定技术基础和人才基础,有多项技术的发展潜力,但生产手段较弱,难以在短时间内形成产业规模,在成本、营销、服务等方面也存在一些差距;二是从主机厂逐步“独立”、“分离”出来的以生产某种功能部件为主发展起来的企业,可称之为“主厂型”。这些企业在生产能力、工艺水平和使用经验上都可以适应市场需求,在一定程度上可以形成规模,但由于其与原主机厂有着千丝万缕的联系,在竞争中往往让用户产生疑虑,影响其市场开拓,同时,其开发能力也有一定的局限性,所以难以形成著名品牌;三是在江浙一带大量涌现出的民营企业,可称之为“民企型”。这些企业主要以劳动密集型、单一品种为主,如护链罩、拖板、喷油管、排屑器、照明设备等。由于竞争激烈,其质量和价格都能满足中低档数控机床的市场需要。虽然这些品种的高档产品尚不能制造,还需依赖进口,但在很大程度上,适应了我国数控机床发展的总体需求;还有一部分外商合资企业或独资企业生产部分较高水平的功能部件,但批量较小,且没有独立的技术开发能力,难以成为功能部件的主体和主流。

3、核心零部件大量依靠进口

中国数控机床行业的发展令人瞩目,2008年中国数控机床工具工业完成工业总产值34723亿元,产品销售产值3348.3亿元,同比分别增长27.5%和26.0%。2002~2008年中国是世界机床第一消费国和第一进口国。但行业迅速发展的背后,一个不能忽视的事实是,我国关键零部件生产依然受制于人,出现了利润不高、产品缺乏核心竞争力的局面。

4、缺乏高技术含量威胁产业安全

我国机床出口连年保持增长的喜人态势,不过“量增价减”的尴尬直接反映出我们的技术水平。大量核心技术的缺乏和关键零部件的依赖直接影响到我国的机床产业安全。因此,我们需要强化预警工作意识,凝聚行业智慧和力量,维护产业安全。