1.高压互锁系统的工作原理

2.计算机组成原理(2)

3.什么是互锁

互锁可以实现什么功能_互锁和电脑系统的关系

计算机的工作原理

半个世纪以来,计算机已发展成为一个庞大的家族,尽管各种类型的性能、结构、应用等方面存在着差别,但是它们的基本组成结构却是相同的。现在我们所使用的计算机硬件系统的结构一直沿用了由美籍著名数学家冯?诺依曼提出的模型,它由运算器、控制器、存储器、输入设备、输出设备五大功能部件组成。

随着信息技术的发展,各种各样的信息,例如:文字、图像、声音等经过编码处理,都可以变成数据。于是,计算机就能够实现多媒体信息的处理。

各种各样的信息,通过输入设备,进入计算机的存储器,然后送到运算器,运算完毕把结果送到存储器存储,最后通过输出设备显示出来。整个过程由控制器进行控制。

? 计算机系统的基本硬件组成及工作原理示意图

?

计算机系统的基本组成,完整的计算机系统系统包括:硬件系统和软件系统。硬件系统和软件系统互相依赖,不可分割,两个部分又由若干个部件组成。

硬件系统是计算机的“躯干”,是物质基础。而软件系统则是建立在这个“躯干”上的“灵魂”。

计算机硬件

计算机硬件系统由五大部分组成:运算器、控制器、存储器、输入设备、输出设备。

中央处理器 (CPU -- Central Processing Unit )

CPU的内部结构可分为控制单元,逻辑单元和存储单元(寄存器)三大部分。如果将CPU集成在一块芯片上作为一个独立的部件,该部件称为微处理器(Microprocessor,简称MP)。

CPU的工作原理就象一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。

1.运算器:是计算机中进行算术运算和逻辑运算的部件,通常由算术逻辑运算部件(ALU)、累加器及通用寄存器组成。

2.控制器:用以控制和协调计算机各部件自动、连续地执行各条指令,通常由指令部件、时序部件及操作控制部件组成。

CPU 的主要性能指标是字长和主频。

字长表示CPU每次计算数据的能力(二进制的位数)。如80486及Pentium系列的CPU一次可以处理32位二进制数据。

主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。时钟频率主要以MHz为单位来度量,通常时钟频率越高,其处理速度也越快。目前的主流CPU的时钟频率已发展到500MHz以上,甚至高达2GHz(2000MHz)以上。

3.存储器 存储器的主要功能是用来保存各类程序的数据信息。

存储器可分为主存储器和辅助存储器两类。

①主存储器(也称为内存储器),属于主机的一部分。用于存放系统当前正在执行的数据和程序,属于临时存储器。

①辅助存储器(也称外存储器),它属于外部设备。用于存放暂不用的数据和程序,属于永久存储器。

存储器与 CPU的关系可用右图来表示。

(1)内存储器

一个二进制位(bit)是构成存储器的最小单位。实际上,常将每 8位二进制位组成一个存储单位,简称字节(Byte)。字节是数据存储的基本单位。为了能存取到指定位置的数据,给每个存储单元编上一个号码,该号码称为内存地址。

度量内存主要性能指标是存储容量和存取时间。存储容量是指存储可容纳的二进制信息量,描述存储容量的基本单位是字节。

信息存储单位? 信息的单位常采用位、字节、字、机器字长等。

1、位(bit,缩写为b) 度量数据的最小单位,表示一位二进制信息。

2、字节(byte,缩写为B)

一个字节由八位二进制数字组成,1byte=8bit。字节是信息存储中的基本单位。每个英文字母要占一个字节,一个汉字要占两个字节。? 其它常用单位有:

KB(千字节) 1 K=1024 B? MB(兆字节) 1 M=1024 K? GB(吉字节) 1 G=1024 M

3、若干个字节构成一个存储单元,每一个存储单元都有一个唯一的编号,称为“地址”,通过地址对存储单元进行访问。

4、字(word)? 字是一个存储单元所存储的内容。常用的固定字长有8位、16位、32位等。

5、机器字长? 机器字长指一个存储单元(或一个字)所含有的二进制数的位数,它是衡量计算机精度和运算速度的主要技术指标。机器的功能设计决定了机器的字长。

千,1KB=2的10次方=1024B,

兆,1MB=2的20次方=1024*1024B=1024KB,

吉,1GB=2的30次方=1024*1024*1024B=1024MB,

太,1TB=2的40次方=1024*1024*1024*1024B=1024GB,

拍,1PB=2的50次方=1024*1024*1024*1024*1024B=1024TB,

艾,1EB=2的60次方=1024*1024*1024*1024*1024*1024B=1024PB,

泽,1ZB=2的70次方=1024*1024*1024*1024*1024*1024*1024B=1024EB,

尧,1YB=2的80次方=1024*1024*1024*1024*1024*1024*1024*1024B=1024ZB

存取时间是指存储器收到有效地址到在输出端出现有效数据的时间间隔。通常存取时间用纳秒为单位。存取时间愈短,其性能愈好。?

内存储器按其工作方式可分为随机存储器(Random Access Memory,简称 RAM)和只读存储器(Read Only Memory,简称 Rom)两类。

①RAM

RAM在计算机工作时,既可从中读出信息,也可随时写入信息,所以, RAM是一种在计算机正常工作时可读/写的存储器。在随机存储器中,以任意次序读写任意存储单元所用时间是相同的。目前所有的计算机大都使用半导体随机存储器。半导体随机存储器是一种集成电路,其中有成千上万个存储单元。

根据内存器件结构的不同,随机存储器又可分为静态随机存储器(Static RAM,简称 SARM)和动态随机存储器(Dynamic RAM,简称 DRAM)两种。

静态随机存储器(SARM)集成度低,价格高。但存取速度快,它常用作高速缓冲存储器(Cache)。

Cache是指工作速度比一般内存快得多的存储器,它的速度基本上与 CPU速度相匹配,它的位置在 CPU与内存之间 (如下图所示)。在通常情况下, Cache中保存着内存中部分数据映像。 CPU在读写数据时,首先访问 Cache。如果 Cache含有所需的数据,就不需要访问内存;如果 Cache中不含有所需的数据,才去访问内存。设置 Cache的目的,就是为了提高机器运行速度。

?

动态随机存储器使用半导体器件中分布电容上有无电荷来表示 “0”和 “1”的,因为保存在分布电容上的电荷会随着电容器的漏电而逐步消失,所以需要周期性的给电容充电,称为刷新。这类存储器集成度高、价格低、存储速度慢。

随机存储器存储当前使用的程序和数据,一旦机器断电,就会丢失数据,而且无法恢复。因此,用户在操作计算机过程中应养成随时存盘的习惯,以免断电时丢失数据。

②ROM

只读存储器(ROM)只能做读出操作而不能做写入操作。只读存储器中的信息是在制造时用专门的设备一次性写入的,只读存储器用来存放固定不变重复执行的程序,只读存储器中的内容是永久性的,即使关机或断电也不会消失。

目前,有多种形式的只读存储器,它们在特定条件下可以擦除,重写信息,常见的有如下几种:

PROM:可编程的只读存储器。 (Programmable ROM)

EPROM:可擦除的可编程只读存储器。(Erasable ROM)

EEPROM:可用电擦除的可编程只读存储器。(Electronic Erasable ROM / E2PROM )

CPU(运算器和控制器)和主存储器组成了计算机的主机部分。

(2)外存储器

外存储器大都采用磁性和光学材料制成。与内存储器相比,外存储器的特点是存储容量大,价格较低,而且在断电的情况下也可以长期保存信息,所以称为永久性存储器。缺点是存取速度比内存储器慢(依靠机械转动选择数据区域),常见的外存储器有以下几种:

硬盘:硬盘的特点是可靠性高,存储容量大,读写速度快,对环境要求不高。缺点是不便于携带,切工作时应避免振动。

光盘:光盘是用光学的方式制成的,光盘盘片上有一层可塑材料。写入数据时,永高能激光束照射光盘片,可在可塑层上灼出极小的坑,并以有无小坑表示数字 “ 0”和 “ 1”,当数据全部写入光盘后,再在可塑层上喷涂一层金属材料,这样光盘就不能再写入数据。再读出数据时,永低能激光束入射光盘,利用盘表面上的小坑和平面处的不同反射来区分 “ 0”和 “ 1”。 目前微型计算机中大都配有只读式光盘(COMPACT DISK READ ONLY MEMORY,简称 CD-ROM),每张关盘容量可达 650MB,DVD可达4G,可存放程序,文本,图象,音乐和**等各种信息。

4、输入设备

键盘(Keyboard )、鼠标(Mouse )、手写笔、触摸屏、麦克风 、扫描仪(Scanner )、条形码扫描、视 频输入设备。

5、输出设备

o显示器(Monitor ):目前主要有 CRT (阴极射线管)显示器和 LCD 液晶显示器。

o打印机(Printer ):主要有针式打印机、喷墨打印机、激光打印机。

o绘图仪 o音箱

*总线

计算机总线是一组连接各个部件的公共通信线。计算机中的各个部件是通过总线相连的,因此各个部件间的通信关系变成面向总线的单一关系。但是任一瞬间总线上只能出现一个部件发往另一个部件的信息,这意味着总线只能分时使用,而这是需要加以控制的。总线使用权的控制是设计计算机系统时要认真考虑的重要问题。

总线是一组物理导线,并非一根。根据总线上传送的信息不同,分为数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB(Control Bus)。

① 地址总线

地址总线传送地址信息。地址是识别信息存放位置的编号,主存储器的每个存储单元及 I/O接口中不同的设备都有各自不同的地址。地址总线是 CPU向主存储器和 I/O接口传送地址信息的通道,它是自 CPU向外传输的单向总线。 地址总线的位数决定了CPU可直接寻址的内存空间大小,比如8位微机的地址总线为16位,则其最大可寻址空间为2^16=64KB,16位微型机的地址总线为20位,其可寻址空间为2^20=1MB。一般来说,若地址总线为n位,则可寻址空间为2n字节。

②数据总线

数据总线传送系统中的数据或指令。数据总线是双向总线,一方面作为 CPU向主存储器和 I/O接口传送数据的通道。另一方面,是主存储器和 I/O接口向 CPU传送数据的通道,数据总线的宽度与 CPU的字长有关。通常与微处理的字长相一致。例如Intel 8086微处理器字长16位,其数据总线宽度也是16位。需要指出的是,数据的含义是广义的,它可以是真正的数据,也可以指令代码或状态信息,有时甚至是一个控制信息,因此,在实际工作中,数据总线上传送的并不一定仅仅是真正意义上的数据。

③控制总线

控制总线传送控制信号。控制总线是 CPU向主存储器和 I/O接口发出命令信号的通道,又是外界向 CPU传送状态信息的通道。

我们通常用总线宽度和总线频率来表示总线的特征。总线宽度为一次能并行传输的二进制位数,即 32位总线一次能传送 32位数据, 64位一次能传送 64位数据。总线频率则用来表示总线的速度。

高压互锁系统的工作原理

外挂式联动互锁系统:然后重启电脑,它会自动完成。

用u启动u盘启动盘制作工具制作u启动盘(或者你可以直接买一个u启动u盘启动盘,这样可以省去很多步骤),重启电脑等待出现开机画面按下启动快捷键,选择u盘启动进入到u启动主菜单,选取“02Win8PE装机维护版(新机器)”选项。

主要功能:

(1)联动互锁功能:联动门的联动互锁功能是最主要的功能之一,在其工作状态下,联动门的外门应保持联动互锁状态,不能同时开启形成通道,以防止非工作人员尾随进入。

(2)内门内部开启功能:联动门在工作状态下,必须由工作人员在内部控制电控装置来开启内门,用来甑别工作人员与非工作人员,以保证营业场所的安全。

计算机组成原理(2)

高压互锁(HVIL),是高压互锁回路(Hazardous Voltage InterlockLoop)的简称。也叫危险电压互锁回路(US7586722 High Voltage Interlock System and Control Strategy),高压互锁是指通过使用低压信号来检查电动汽车上所有与高压母线相连的各分路,包括整个电池系统、导线、连接器、DCDC、电机控制器、高压盒及保护盖等系统回路的电气连接完整性(连续性)。

在ISO国际标准《ISO 6469-3: 2001电动汽车安全技术规范第3部分:人员电气伤害防护》中,规定车上的高压部件应具有高压互锁装置,但并没有详细地定义高压互锁系统。

高压互锁的目的是,用来确认整个高压系统的完整性的,当高压系统回路断开或者完整性受到破坏的时候,就需要启动安全措施了。

一、高压互锁原理

高压回路内以动力电池包作为电源,低压回路也需要一个检测用电源,让低压信号沿着闭合的低压回路传递。一旦低压信号中断,说明某一个高压连接器有松动或者脱落。高压互锁原理体现的高压互锁信号回路基础上,按照整体策略,设计监测点或者监测回路,负责将高压互锁信号回路的状态传递给VCU或者BMS。

二、高压互锁回路设计原则

由于电动车动力系统是由多个子系统组成的,他们两两之间都是靠高压连接器相互连接,同时运行的环境十分恶劣,大多数工况处在振动与冲击条件下,因此高压互锁设计是确保人员安全和车辆设备安全运行的关键。

总体来看,电动汽车高压互锁回路设计须遵循以下原则:

1)HVIL回路必须能够有效、实时、连续地监测整个高压回路的通/断情况;

2)所有高压连接器应具备机械互锁装置,并且只有HVIL回路先行断开以后才能接通连接器;

3)所有高压连接器在非人为的情况下,不能被接通或断开;

4)HVIL回路应具备在某种特殊情况下,可以直接通过BMS检测HVIL回路,直接断开高压回路;

5)无论电动汽车在任何状态,HVIL在识别到危险时,车辆必须对危险情况做出报警提示,需要仪表或指示器以声或光报警的形式提醒驾驶员。

什么是互锁

取地址,虽然是地址,但是cpu在取的时候只是数儿而已,所以是用数据总线

usb主要是通信功能,数据功能,通电……不至于

总线就是机器、部件、机器部件彼此通信的通道

分为串行通讯(单条1位宽,一位一位按照顺序分时传送)、并行通讯(比如八条线)

并行通讯适用于近距离的,前者是远距离,都是距离越远效率越低,短距离内并行数据速率高

系统总线(数据总线)可以传输:指令、操作数(其实是一回事儿)

进入cpu的只能是数据线

中断类型号:从外设到cpu,还是从数据总线进去的,转中断处理

握手信号:控制总线来管理(层次更低)

tcp有链接,必须握手

udp无连接

cpu插板

引脚(就是一个通道或者说是接口吧)(连接主线的接入点)

主存插板(内存条)

io插板

bus就在pcd板内,线路板的作用归结集成到一起

很多已经直接将对应的芯片安装在主板上,很多插卡已经做成了专用芯片,减少了插槽,使其结构更加合理

机械特性

1.机械连接方式

电气特性

2.每一根线上传输信号的方向和有效电平范围,cpu发出的是输出,送入的输入,地址总线是单向输出线,数据总线是双向传输线,高电平是1,低电平是0,控制总线都是单向,有输入和输出

功能特性

3.每根传输线的功能,地址总线指出地址码,数据总线传递数据,控制总线发出控制信号(向或是从cpu发出的)

时间特性

4.总线中的一根什么时间内有效,有效时序

总线宽度:数据线的根数

总线带宽:单位时间总线上传输的数据的位数,也即是每秒传输信息的字节数

标准传输率:每秒传输的最大字节数

时钟同步/异步:同步或者不同步(与时钟)

总线复用:分时复用地址线和数据线(地址接收,数据接收,数据发送)(归根结底是因为接收发送的借口复杂)(也就是地址线和数据线用一组物理线路)

信号线数:地址线、数据线和控制线的总和

总线控制方式:并发、自动、仲裁(处理同时请求)、逻辑、计数

负载能力:可以连接的扩增电路板的数量

pcie、usb、agp、rs232是常见的总线

crt显示器

usb:即插即用,带电操作,热插拔

级联方式连接多台外设,一转多

通信总线,连接不同外设

同时只能传输一位数据(因为是串行的)

存储总线可支持突发传送方式(运用局部性访问一部分地域,快于随机访问(只是一个字节))(burst)

总线之间通过桥接器相连(控制器)

pci是串行

多个部件同时提出总线请求——总线判优控制——仲裁

bg——总线同意

br——总线请求

bs——总线忙

有无控制功能可以分为主设备和从设备

总线判优控制分为集中式和分布式,前者将控制逻辑集中在一处,后者将控制逻辑分散在与总线连接的各个部件设备上

1链式查询中距离控制部件最近的设备具有最高的优先级,只需几根线就能实现优先次序,容易扩充设备,但对电路设备敏感,优先级别低的设备很难获得请求

2计时器定时查询,br总线请求,总线控制部件接收到br请求信号后,其计数器开始计数,通过地址线向设备发出地址信号,当某个请求占用总线的设备地址与计数值一致时就获得总线使用权,计数可以从0开始,优先次序被固定就不变,也可以从上一次终点开始,即循环方法,此时设备使用总线的优先级相等,初始值也可以从程序设置,对故障容错高

3独立请求方式

设备请求时就发送信号,总线控制部件中有一排电路,可根据优先次序确定响应设备请求,响应速度快,优先次序控制灵活,但是控制线数量多,复杂

总而言之是链式是两根,计数器查询是 logn(允许接纳的最大设备数),独立请求是 2n

先发送地址,然后是读取允许的命令,然后是读数据(这些都是发起),最后有结束时刻

发送地址,把数据放在总线上,开始读取,但是要维持数据,写就是向低速设备上写

连续的时候只发起一个地址,其他就是读的操作(操作要分开)

众多部件争夺总线使用权的时候就应该是按照优先等级来解决,在通信时间上就应该按照分时方式来处理,就是获得使用权的先后顺序

一次总线操作的时间就称之为总线操作,分为几个阶段

1.申请分配阶段,由需要使用的模块提出申请,然后总线的仲裁机构决定

2.寻址阶段,取得了使用权的模块通过总线发出本次要访问的地址和有关命令,启动从模块(也就是目标)

3.传数阶段,主模块和从模块进行数据交换,这个是经由数据总线

4.结束阶段,所有的主模块信息从系统总线上撤除,也就让出了总线使用权

解决问题:如何让双方获知传输开始结束,通信双方如何协调配合,

1.同步通信

通信双方由统一时标控制数据传送称为同步通信,所谓时标,由cpu的总线控制部件来发出,送到总线的所有部件上,也可以由各自的时序发生器来发出,但是必须由总线控制部件发出的时钟信号对其进行同步

cpu在t1上升沿发出了地址信息,在t2上升沿发出了读命令(与地址信号相符合的输入设备按照命令进行一系列内部操作,且必须在t3上升沿到来之前将cpu所需数据发送到数据总线上);t3周期内将数据线上的信息送到其内部寄存器中,t4上升沿撤销读命令(输入设备不再传送数据,并且撤销对数据总线的驱动)

t1:主模块发地址

t2:主模块发读命令(提供数据)

t3:从模块提供数据(主模块提出写命令,从模块在规定时间内将数据总线上的数据写到地址总线所指明的单元中)

t4:主模块撤销命令,从模块撤销数据(主模块撤销数据和命令)

优点是规定明确、统一,配合简单一致,缺点是主从指甲你强制性同步,且必须在限定时间内完成规定的要求,不同速度必须迁就慢速度,影响工作效率

同步通信一般用于总线长度较短,各部件存取时间一致的场合

这种总线系统中,传输周期越短,数据线位数直接影响传输率

2.异步通信

克服了同步通信的缺点也就是它允许各个模块的速度不一致,没有公共的时钟标准,不要求所有的部件严格的统一操作时间,采用应答方式(握手),主模块发出请求信号时要等待从模块反馈回来的响应信号,再开始通信,但是需要在主从之间加上应答线

(1)不互锁方式

主模块发出请求信号后,不必等待接收从模块的回答信号,而是经过一段时间,确认从模块已经收到请求信号后,便撤销请求信号;从模块接收到了请求信号之后,在条件允许的时候发送回答信号,并且经过一段时间(这段时间随设备的不同而不同)确认主模块已经收到了回答信号之后,自动撤销回答信号,也就是没有互锁关系

比如cpu向着主存写信息需要先后给出地址信号、写命令、写入数据就是这种方式

(2)

主模块发出请求信号,必须等待接到从模块的回答信号之后再撤销请求信号,有互锁关系,从模块在接收到了请求信号之后发出回答信号,但是不必等待获知主模块的请求信号已经撤销,而是隔一段时间之后自动撤销其回答信号,没有互锁关系,也就是说主模块受到从模块的锁定而后者不必受到前者的锁定,就称为是半互锁方式

比如多机系统中某个cpu需要访问共享存储器(供所有的cpu访问的存储器),cpu发出访存命令之后必须收到来自于存储器未被占用的回答信号才能真正进行访存操作(但是共享存储器因为比较屌就不需要)

(3)

主模块发出请求信号,必须等从模块的回答再撤销,后者也是,这即是全互锁,在网络通信中,通信双方采用的就是这种方式。

异步通信可以用于并行传送和串行传送

半同步通信

保留了同步通信的基本特点,地址命令数据信号的发出时间都严格参照系统时钟的某个前沿开始,接收方都采用系统时钟后沿来进行判断识别,也像异步通信一样允许不同速度的模块和谐工作,就增设了一条wait响应信号线,采用插入时钟等待周期的措施来协调通信双方的配合问题

主模块:t1地址,t2命令,t3传输数据,t4结束传输,

但是从模块速度慢无法在t3提供数据,就必须在t3之前通知主模块给出低电平信号,插入一个等待周期tw(与时钟周期同宽度),不立即从数据线上取数,若是还是低就再插,

t1:主模块发出地址信息

t2:主模块发出命令

t3w:低电平进入等待

t3:从模块提供数据

t4:主模块撤销读命令,从模块撤销数据

适用于系统工作速度不高但是又包含了许多工作速度差异较大的设备组成的简单系统,比起异步通信简单,在全系统内各模块在统一的系统时钟控制下同步工作,可靠性高,同步结构较为方便,缺点是对于系统时钟频率要求不能太高,所以整体速度慢

忙碌是所有灵感和可能性的敌人,身为一个健全健康的人,我们应该允许自己赋予自己以“空闲”的权利,否则的话,我们就跟慌不择路的行尸走肉没有任何区别

4.分离式通信

以上三种通信方式都是从主模块发出地址和读写命令开始,直到数据传输结束,在整个传输周期中,系统总线的使用权完全由占有使用权的主模块和由它所选定的从模块占据,进一步分析读命令传输周期,发现除了申请总线这一阶段,其余时间主要花费在3方面

1.主模块通过传输总线向从模块发送地址和命令

2.从模块按照命令进行命令进行读数据的必要准备

3.从模块经过数据总线向着主模块提供数据

由2可见,对于系统总线,从模块内部读数据过程没有实质性的信息传输,总线是空闲的,为了克服利用,在大型计算机系统中,总线的负载已处于饱和状态,充分挖掘系统总线每个瞬间的潜力,对于提高系统性能能够起到极大的作用,为此人们又提出了分离式的通信方式,使一个传输周期分解为两个子周期,第一个周期中,主模块a在获得总线使用权后将命令地址和其他相关信息包括编号发布到系统总线上(当有多个主模块的时候这个编号就很重要了),经过总线传输之后,就由相关的模块b接收下来,这个发布信息只占用很短的时间,发送之后立即放弃总线使用权,以便其他模块使用,在第二周期中,b模块收到相关信号后,选择译码读取,将所需数据准备好,申请总线使用权,获准之后就将a的编号,b的地址,a所需的数据等送到总线上,由a接收,两个周期都是单向的信息流,每个模块都是主模块

特点

1.各模块都需要提出申请

2.得到总线使用权之后必须在限定的时间内向着对方发送信息,采用同步方式,不再等待对方的回答信号

3.准备数据的过程中都不占用总线,可以接受其他模块的请求。

4.占用的时候都在做有效工作,发送命令或者是数据,没有等待,充分利用了占用,实现了总线在多个主、从模块间进行信息交叉重叠并行式传送

终于到了这里了,话说令我震惊的是一节课的内容我竟然花了足足有三四天的时间来整理笔记,但是同时我也能够明显地感觉到,现在对于知识的学习效率要比起以前高得多,以前总是要不做要不不做,总是没有模糊的时候,但是现在,却是能够放慢自己的节奏,以前觉得自己每一天活完了之后都看不到第二天的太阳,现在却不再抱有恐惧

《狐妖小红娘》中南国皇帝说过一句话:“年轻人不喜欢吃苦,只会拼命”

我想背后的意思就是,接受没有奇迹的生活吧,只有接受暂且苟且的现在,未来才有期望的价值。

今天来复习最后一点知识也就是关于总线结构的地方。

通常分为单总线结构和多总线结构

1.单总线结构

将cpu、主存、io设备都挂在一组总线上,允许彼此之间直接交换信息,也便于扩充,所有的传送都通过这组,极易形成计算机瓶颈,也不允许两个以上部件同时传输信息,会影响工作效率的提高

被小型微型计算机使用

在外部设备随着种类数量变多而对数据传输数量和速度要求变高的时候,如果仍然采用单总线结构,总线发出的控制信号依次到达很多个设备延迟时间就会影响工作效率,在数据传输量和速度要求不高的情况下,增加总线宽度和提高传输速率来解决,但是要求高的时候只能使用多总线结构

2.多总线结构

双总线结构,将io设备分离出来,通过通道与总线相连,cpu将一部分功能给通道,具有管理功能,完成外部设备与主存间的数据传送,用于大中型计算机将io设备分类,主存总线用于cpu和主存之间传输,io总线供应cpu和io设备传递信息,dma用于高速io设备,任意时刻只能使用一种总线,主存和dma不能同时对主存进行存取,io总线只有cpu执行io指令时用到

或者:

处理器与cache之间有局部总线,将两者与设备连接(局部io控制器),cache也直接连接到系统总线上,就可以直接与主存交换信息,io设备与主存也不必通过cpu,而是扩展总线,通过扩展总线上的各类接口与io设备相连,可以支持两种总线之间的信息传递,效率提高

四总线结构(反正你要玩儿死我是吧!)

增加了一条高速总线,挂接了一些高速io设备,通过cache控制机构中的高速总线或是高速缓冲器与系统总线和局部总线连接,使得这些高速设备与cpu更密切,而低速依然是扩展总线,并且由控制之下与高速总线相连,高速设备可以很少依赖又更贴近cpu,各自的效率提高,cpu、高速总线、各自信号线定义可以完全不同,改变结构也不会影响高速总线的工作

电气控制中互锁主要是为保证电器安全运行而设置的。它主要是由两电器件互相控制而形成互锁的。

电气互锁的解释:将这两个继电器的常闭触电接入另一个继电器的线圈控制回路里。这样,一个继电器得电动作,另一个继电器线圈上就不可能形成闭合回路。但也可以用机械联杆实现这一动作。

如把常开辅助触点与启动按钮并联,这样,当启动按钮按下,接触器动作,辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。

扩展资料:

互锁的原理以及保护作用:

1、欠压保护:当电源电压由于某种原因下降时,电动机的转矩将显著降低,影响电动机正常运行,严重时会引起“堵转”现象,以致损坏电动机。采用接触器自锁控制电路就可避免上述故障。

因为当电源电压低于接触器线圈额定电压85%时,接触器电磁系统所产生的电磁力克服不了弹簧的反作用力,因而释放,主触点打开,自动切断主电路,达到欠压保护的作用。

2、失压保护:当电动机启动后,若供电电路停电,但随后又恢复供电,在这种情况下,由于自锁触头仍然断开,电动机不会自行启动,必须重新发令(按启动按钮SB2)才能启动。

百度百科-自锁互锁